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Introduction 
Welcome to the Havok physics primer.  This document is designed to give a 
broad overview of physical simulation and specific details about how Havok 
technology performs these simulations.  We will not refer to particular Havok 
products, but rather aim to give a general understanding of the terminology, 
methodology and behavior associated with the Havok physics engine. 

Physical simulation 
Physical simulation is certainly not a new phenomenon.  Computers have been 
used to simulate ballistic motion (i.e. rocket trajectories for military purposes) 
since the 2nd world war; one of the world’s first computers, Collossus, was built 
primarily for this purpose.  Finite element (FE) and computational fluid 
dynamics (CFD) methods have been employed for decades to aid in industrial 
design, to simulate anything from vehicle crash test performance to airflow over 
semiconductors.  These last 2 methods are typically very expensive in terms of 
the CPU resources required – they are concerned with accuracy and as such the 
calculations need to be performed with a high level of detail.   
 
Both methods employ some form of grid which breaks up the object / scene 
being simulated into chunks or elements (see Figure 1) and performs 
calculations at the element level (therefore the greater the number of elements 
the more accurate the simulation, but the more calculations required.)  
 

 
Figure 1: A finite element based temperature simulation, with an individual element shown. 

 
Most of these high-end simulations employ some form of boundary condition, or 
information regarding the bounds of the simulation in order to take into 
account the rest of the scene around the object being simulated.  For example, 
we might want to examine the result of an impact on the side wing of a car.  
Rather than model the entire car, we model only the wing itself and set up 
boundary conditions that capture the fact that the wing is actually attached to 
other semi-rigid parts of the car –the wing is simulated in isolation (simply 
because of the expense of simulating the whole car at the level of accuracy 
required.)  In effect we are not interested in the entire scene or system (i.e. the 
car) but only in the object itself (the wing) and are prepared to make large 



Copyright © 2000 / 2001 Havok.com Inc. 

 Page 4 

assumptions about the rest of the scene in order to get good accuracy for the 
object simulation. 
 
At another level we might want to see how interacting entities behave to give 
system wide behavior – this is discrete event simulation where the aggregate 
behavior of a system of events over a period of time is of interest.  For example, 
you might construct a discrete event simulation of a bank teller (see Figure 2) 
and the length of queue that forms based on certain conditions (average time 
spent by customer, speed of bank teller etc.)   
 

 
Figure 2: discrete event simulation of a bank teller and customers 

 
It’s of no interest in this case whether the individual customers bang into each 
other, or trip over the queue guide ropes – we are only interested in figuring out 
the average length of the queue and the average throughput of the bank.  We 
talk of averages here, because we’re dealing with statistical behavior rather 
than individual behavior (with a good model with good assumptions we can 
predict the wait time for a customer within a statistic margin of error, but 
would never be able to predict exactly what would happen to the customer; who 
they would meet in the bank or whether they would slip on a banana skin.) 

The continuum of simulation 
This leads us to a sort of continuum of physical simulation; at one end we have 
the highly accurate but highly localized finite element based simulation and at 
the other we have discrete event simulation, where the behavior of individual 
entities is not of interest, but rather the behavior of the system as a whole. 
 
Havok physics simulation is somewhere in the middle of these; we are not really 
concerned with the specific and accurate behavior of an object or sub-part of an 
assembly although we do want to know how each object interacts and behaves 
(but we might not be interested in the pressure at a particular point inside the 
object or the heat distribution through the object).  At the other end of the 
spectrum, we’re not really looking for aggregate system-wide behavior without 
caring about the behavior of the individual elements – it’s these elements that 
we’re interested in!  With Havok, the entire scene is modeled; we are interested 
in the behaviors of collections of physical objects of various shapes and 
substances with a view to creating immersive and interesting environments.  

Realism vs. Believability 
Havok’s core aim is to provide a simulation that appears realistic.  In many 
cases we’ve had to make assumptions and take short cuts in order to simulate 
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the scene in as fast a time as possible – but these short cuts have always 
attempted to trade off accuracy and not believability.  One of our allies in this is 
chaos!  The world around us is inherently chaotic – we’re all familiar with the 
butterfly effect (a butterfly in Canada flaps its wings and causes, by an unlikely 
chain of events, a typhoon in India).  In the case of physics simulation, we are 
dealing with such a large number of parameters (positions, orientations, forces, 
velocities etc.) for a large number of objects that even the slightest change in 
starting condition can yield enormous differences in the resulting simulation.  
This is mostly the reason why animations of physical systems (like clothing, 
wind, smashing objects) rarely look realistic unless a) the animator is 
particularly skilled and has lots of time on their hands and b) a different 
animation is used each time the effect is required.  In Figure 3 below, a wall is 
struck from 3 different locations.  If, in a game, a single animation were used 
each time, the impact position would have no effect on the destruction 
sequence, giving unrealistic and unbelievable behavior. 
 

 
Figure 3: chaotic behavior of a smashing wall impacted at different locations 

An enormous amount of time is dedicated to mimicking chaos in animation 
playback, particularly for real-time systems where the animations may be 
played many times (we are very unforgiving of looped or repeated animations.)  
In a game, if a character falls in exactly the same way each time it is killed, our 
belief that we are playing in a real environment (albeit as fantastical as the 
game scenario dictates) is negatively affected.  With a physics engine, you get 
this expected chaotic behavior by default and this is the primary reason for 
using this technology. 

Scale 
Physics, as a body of knowledge, is enormous.  What we are concerned with 
here would more accurately be described as a mechanical simulation of the 
interactions of objects at real world scales.  We are dealing with Newtonian 
mechanics, that is, the well understood laws of motion, popularized by Sir Isaac 
Newton, that describe the behavior of objects under the influences of other 
objects and external forces.  Since then we’ve discovered that these laws break 
down at really small (i.e. subatomic) and really large (i.e. planetary) scales.   
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Figure 4: Havok operates at a “real world” scale and is inappropriate for both sub-atomic 

and galactic / planetary scales! 

 
New physics systems have been devised to work with these scales (e.g. 
relativistic and quantum), but these are way beyond the scope of the Havok 
physics engine.  As indicated in Figure 4 Havok works at the scale of objects we 
interact with on a daily basis (chairs, cars, buildings, footballs).  By default the 
Havok engine works in units of meters and kilograms.   
 
One of the most common mistakes we see people make is to start by creating a 
box 100×100×100 units (meters remember) and wondering why it takes so long 
to fall.  A box of this size (basically an aircraft hanger) when viewed at a 
distance sufficient to be able to see the entire box (say 1km away) will appear to 
fall at the same speed as an aircraft hanger dropped from a height and viewed 1 
kilometer away.  Slowly.  
 
Look at it this way: gravity at the Earth’s surface is approximately 10 meters 
per second per second, written 10 m/s2.  Therefore for every second, objects 
increase their speed by 10 meters per second, or 10 m/s.  So we have the 
following speed progression: 
 

Time 
Elapsed 

Speed Distance 
Traveled 

Acceleration 

0 seconds 0 m/s 0 meters 10 m/s2 
1 second 10 m/s 5 meters 10 m/s2 
2 seconds 20 m/s 20 meters 10 m/s2 
3 seconds 30 m/s 45 meters 10 m/s2 
4 seconds 40 m/s 80 meters 10 m/s2 

Table 1: calculating the speed of an object falling under gravity 

How was this calculated?  At the very start the object is stationary, and 
therefore its speed is 0 m/s.  After a period of 1 second, accelerating at a 
constant 10m/s2 it will have reached a speed of 10 m/s.  But, its average speed 
over that period was 5 m/s (i.e. start speed = 0 and end speed = 10).  Therefore 
the distance traveled during the 1-second interval was 5m.  In fact the true 
formula for distance traveled d given acceleration a and starting speed v after 
time t has elapsed is: 
 

d = vt + ½at2 and if t =1 second then   d = v + ½a  
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So you can see that even after 4 seconds has elapsed the large box (aircraft 
hanger) has not even fallen a distance equal to its own height, so will appear to 
be moving slowly.  It is very important to maintain a sense of scale at all times 
when working with the physics engine. 

Changing Scale 
In the previous section it was stated that the Havok engine works at a scale of 
meters (and kilograms for weight measurements).  This is not strictly accurate!  
In fact, Havok does not care what the units used are, it only cares about the 
numbers.  You just need to be very careful to be consistent.  So if working in 
meters then make sure that gravity is set to a value that is in meters (if you 
want Earth-like gravity then use 9.8 m/s2).   
 
If you prefer to work with inches, then you need to be aware that ALL quantities 
specified must be in inches.  So for example, if you create a cube of size 100 
units (as in the previous example), but don’t specify gravity in inches, the cube 
will still fall at the same speed (even though you now think of it as being about 
7 feet in length on each side).  If gravity is set to 9.8 units, the physics engine 
will be effectively simulating a gravitational pull of 9.8 inches per second per 
second (less even than the moon!). Look at it this way: 
 
� cube is 100×100×100 meters, gravity is 9.8 m/s2, cube falls slowly. 
� you switch to thinking in inches, cube is now 100×100×100 inches, but 

nothing has actually changed, because gravity is now 9.8 inches/s2 
� you convert gravity to inches: gravity set to 386 inches/s2, now the cube 

falls at the expected speed  
 
 [note: 1 inch = 0.0254 meters; gravity = 9.8 / 0.0254 = 386 inches/s2]  
 
It is all relative: the physics engine works with dimensionless units at all times 
(does not care whether it is inches, meters or miles).  It is up to you to remain 
consistent and convert values to the correct units as appropriate.  To confuse 
matters though, the Havok engine has been designed to be most accurate when 
dealing with numbers as close in magnitude to 1 as possible (i.e. values like 
10000000 are bad as are values like 0.0000001).  Therefore for real world 
scenes when creating objects of 1×1×1 size it is more useful to be working in 
meters than centimeters or kilometers (or inches / miles) in that you will most 
often be simulating objects larger than sugar cubes and smaller than football 
fields.  It is for this reason that we say the physics engine works with meter 
scales by default. 
 
� Try to be very careful with scale, particularly when using 3D modelers.  

Often modelers will have their own mechanisms for displaying units in 
dialog boxes (e.g. 3ds max allows you to specify the units being used and 
automatically converts all values displayed to those units – however 
internally it always works in inches, including when exporting geometry.) 
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What does a physics engine do? 
A physics engine like Havok has 3 basic tasks to perform: 
 

1 Collision detection: track the movements of all the objects in the scene 
and detect when any of them have collided. 

2 Update system: determine an appropriate response for objects that have 
collided by resolving the collision according to the object properties and 
for all other (non-colliding) objects update them according to the forces 
acting on them.  

3 Interface with display: once the new positions of all objects have been 
determined we usually need to display them to the physics engine will 
report the updates to the 3D display system. 

 
Note: a physics engine knows and cares nothing about how the objects it is 
simulating are displayed.  It simulates the motion and interaction of these 
objects based on a physical (not graphical) description of the objects, and this 
information may be used to generate a display that “tracks” the simulation.  
This will be covered in a little more detail later in the section covering proxy 
objects. 
 
Given that we are talking about simulating a continuously evolving state (i.e. 
objects are moving and colliding and reacting all the time in general) we need to 
map this to a series of snap shots in order to generate an animation for display.  
Typically for games we are interested in knowing the state of the world 60 times 
a second (this is how frequently many graphics systems redraw the screen).  
For movies we might be interested in 25 frames per second.  What this really 
means is that the physics engine must be capable of evolving the world by 
1/60th of a second (or 1/25th of a second for movies) knowing the state of all the 
objects at the start of this time interval and knowing the external forces acting 
on these objects.  As an example we’ll look at the simple case of a canon ball 
and we’ll assume we’re interested in animation at 60Hz (Hz = cycles or frames 
per second). 

Simulating a canon ball 
Let’s forget about collisions for now, and consider only the simulation of a 
canon ball immediately after it has been fired from the canon.  We know the 
ball’s position (and orientation, but we’ll ignore this for now), its speed and 
acceleration, we know its weight and we assume we know the state of the 
environment (i.e. air resistance, wind force, gravity).  Armed with this 
knowledge we can start to make predictions using Havok. 
 

 
Figure 5: expect ballistic motion of a canon ball is a parabolic arc 
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Figure 5 illustrates what we would like to achieve.  Over a period of time the 
canon ball’s rate of ascent should slow due to gravity, and it should eventually 
fall to the ground having traveled through a classic parabolic arc (assuming no 
air resistance). 
 

 
Figure 6: given an initial condition and knowing the forces acting we can estimate the new 

state of a body in motion 

At a given point in time we can examine the state of the ball (its speed v and 
acceleration a) and knowing the external forces acting on it we can make a 
guess as to its change in position after a period of time has elapsed (call this 
period h seconds), as shown in Figure 6.  This guess is a combination of a 
number of factors: 
 

a) We assume that Newton’s laws of motion govern the motion of the ball. 
b) We assume that in the time period h all the external forces acting on the 

ball are constant (so air resistance and wind and gravity do not change 
during this time.) 

c) We assume that the math we use to calculate the new position is 
accurate. 

 
In general a) is usually a good assumption (except at relativistic or quantum 
scales which we can assume should be handled by other systems).  b) and c) 
however cause problems and are closely linked to the time period h over which 
we’re performing the calculations.  We’ll now examine the effect of the size of 
this time period on the accuracy of the simulation. 

Time steps 
In general, the forces acting on an object are rarely truly constant (gravity is 
pretty close to being constant all the time but most other forces like wind, air 
resistance etc. are not).  So taking the canon ball example, imagine there was a 
windy layer in the atmosphere that the canon ball passes through as shown in 
Figure 7. 
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Figure 7: effects of differing time steps on simulation outcome, the big problem being the 

assumption of constant force acting on the object during the time period 

 
In the simulation on the left we assume we’re taking steps of 1 second (which is 
really pretty big for a physics simulation, but used here to illustrate the point).  
We know all the forces acting on the ball at time t1 so we use some math to 
predict the new position and velocity at time t2 after 1 second has elapsed.  
During this period we will have assumed that the wind force acting on the ball 
was constant.  In this example, we’ll calculate the new position, which will be at 
a height above the region of high wind (so we’ll effectively have missed the 
windy bit by taking too large a jump).  In the second example on the right, we’re 
using time steps of ½ seconds.  In this case after determining the new position 
at time t2 we find the ball in the middle of the windy region.  This region causes 
a large wind force to act on the ball which will taken into account during the 
next time step, at which point we re-evaluate the math and determine a new 
position for the ball at time t3 which is different from the position determined in 
the simulation on the left (i.e. the wind has blown the ball to the left a bit and 
has reduced the velocity of the ball), even though the same amount of time has 
been simulated in each case. 
 
In general, the smaller the time step taken, the more accurate the result at the 
end of the time step – so if you want to step forward in time by a large time step 
t it is better to split this into n steps of a smaller time interval t / n. 
 
This is also true of the math.  As the simulation becomes more complex the 
math required to calculate the new positions and velocities of objects in a 
simulation also becomes more complex, and as a result the guesses produced 
by the math give less and less accurate results. 
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Figure 8: evolution of a physics system captured in a series of “snap shots” 

 
So the principle is to take small time steps, evaluate all the forces acting on the 
objects, determine the new positions and velocities (and other parameters) of 
the objects at the end of the time steps and then start over.  What we end up 
with is a series of snapshots of the state of the system as it evolves as shown in 
Figure 8. 

Integrators 
As mentioned earlier, the math becomes less accurate as larger time steps are 
being used.  The physics engine is implementing a fast numerical integration of 
a series of differential equations describing the motion of objects.  An integrator 
is an algorithm that attempts to estimate the new state of a variable or 
parameter (e.g. position) knowing information like the rate of change of the 
parameter (e.g. velocity).  There are various different integrators available.  They 
vary in CPU load and accuracy of result.  The following table gives an overview 
of the integrators provided with the Havok engine: 
 

Integrator CPU load Accuracy 
Euler low low 
Midpoint medium medium 
Runga Kutta (RK45) high high 
Back Euler medium medium-high 

Table 2: integrators and their properties – faster usually means less accurate 

As can be seen the higher the accuracy required the more CPU power required.  
We’ve found that for movie production you are better off with an accurate 
integrator (like RK45) and taking small time steps, but for real-time 
performance you should usually start with Euler, the fastest but least accurate, 
and only move to a more accurate integrator if you are not happy with the 
accuracy.  Later we will talk more about integrators and in particular their 
effect on stability in constrained systems. 
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The Simulation Loop 
We’ll examine now the structure of the physical simulation (shown in Figure 9) 
and how we integrate this with a 3D display. 
 

 
Figure 9: the structure of a physics simulation system 

 
Having setup the initial conditions for a given scene, we begin the main 
simulation loop which basically steps through 3 phases: 
 

a) Detect Collisions: at each step we need to determine which objects have 
collided.  These will result in new collision forces and friction forces being 
introduced into the system. 

b) We then update all the forces acting on the objects either as a result of 
collision detection or as a result of input from outside the simulation 
(here is where we would add input from a user in a real-time game e.g. 
the user presses the accelerate key should cause the vehicle being driven 
to accelerate). 

c) Having accumulated all the forces we then, using the selected integrator, 
determine the new state of the objects (position, orientation, velocity, 
acceleration etc.).  This information is then used to update the 3D 
display. 

d) Advance time by the step size h and determine if these new positions 
have resulted in collisions between any of the objects. 

 
This assumes that at each step in the simulation we actually want to update 
the display.  The next section deals with what happens when this is not the 
case. 

Sub Steps 
Assume we absolutely need to update the display once every 1/60th of a second 
(i.e. we are either playing a real-time game that refreshes the screen at 60Hz. or 
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we are creating a movie to be played back at 60 frames per second.)  Ignoring 
the load on the CPU, this effectively means that we want to step the physics 
engine at intervals of 1/60th of a second.  In many cases this does not present a 
problem, but if, hypothetically, the accuracy of the simulation was not sufficient 
(remember: smaller time steps mean better accuracy) then we’d like to decrease 
the time step even further, let’s say to 1/120th of a second.  But this would 
mean we generate twice the number of images we are interested in, which is 
wasteful.  To get around this, the Havok engine allows you to specify the 
number of sub-steps to take.   
 
The sub step parameter specifies the number of steps the physics engine takes 
before updating the 3D display.  This gives control over the granularity of the 
physics simulation independent of the display update frequency.  So if sub 
steps = 0 then no physics steps are taken, with sub steps = 1, a single 
simulation step is used for each update to the 3D display.  With sub steps = 2, 
2 physics steps are taken and then the display updated. 
 

 
Figure 10: sub steps allow simulation frequency to be decoupled from display frequency 

  
In Figure 10 we have specified that the physics simulation should step at 
intervals of 1/240th of a second, but that we only update the display once every 
1/60th of a second.  This has been achieved by instructing the physics engine to 
employ 4 sub steps.  Therefore for each 4 steps we update the display only 
once.  By setting the number of sub steps we can control the accuracy of the 
physical simulation independent of the display. 

Lower Limit on CPU 
An unfortunate but unavoidable side effect of using a physics simulation is that 
there is a definite lower limit on the CPU time you can give to the physics.  In 
contrast, there’s no real lower limit on the CPU time given to graphical display 
(let’s assume you don’t have hardware acceleration).  As you decrease the CPU 
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allocation to the display you can simply draw fewer polygons, or remove fogging, 
or turn off lighting, but at no time will the display actually “break”.   
 
Physics is different.  A physical simulation must be maintained at a stable state 
(given that each simulation result depends completely on the previous 
simulation step).  If, in one step, we produce a very inaccurate result, then the 
next step is likely to be even more inaccurate, and you end up in a spiral of 
decreasing accuracy until eventually the results are garbage (the simulation is 
said to have “exploded”).  Therefore you can’t simply reduce the number of 
objects or turn off friction to compensate for a reduction in the available CPU 
resources – you simply have to ensure that your scene can be simulated stably 
even with the lowest expected CPU bandwidth. 

Energy Management 
One of the major factors determining the load on the CPU in a physical 
simulation is the number of objects that are active or moving i.e. being 
physically simulated.  In a typical scene a large number of objects are not 
actually moving at all, and in theory could be ignored until interacted with.  
Energy management is concerned with determining which objects in a scene are 
not doing very much and removing these from the physical simulation (known 
as turning the object off or deactivating the object) until such time as they begin 
to move again.  The important elements of energy management are: 
 

��When should an object be turned off? 
��When should an object be turned back on? 

 
Both questions above are tricky to provide a general answer for and typically 
the correct answer is highly context dependent.  Usually objects are deactivated 
when they haven’t moved much recently and are reactivated when hit by other 
moving objects.  However, temporarily removing objects from the simulation 
remains the best single way to reduce the load on the CPU and it is well worth 
experimenting with the parameters provided by the Havok engine for automated 
object deactivation. 

Collision Detection 
This is possibly the most crucial part of any physics engine.  Collision detection 
typically accounts for over 90% of the CPU time required for a physical 
simulation.  Given that we are interested in large numbers of interacting objects 
we have a potential explosion in the numbers of collision tests we need to do.  
At a worst case, with n objects in a scene we need to guarantee that every 
possible pair (sometimes called a collision pair) is checked.  This requires n(n - 
1)/2 tests (for each object n we test with every other object but not itself, (n – 1), 
giving n(n - 1) tests, but given that a test for A colliding with B is the same as 
one for B colliding with A we divide by 2).  So for 4 objects we need to do 6 tests; 
for 100 objects we do 4950 tests.  This gets expensive pretty quickly.  Given 
that the physics engine needs some detailed information about each collision in 
order to be able to resolve it correctly, the collision tests themselves are 
expensive. 
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There are a number of ways to speed up this process: 
 

a) Reduce the number of collisions that require detailed collision results to 
be generated (i.e. use a simpler collision test first). 

b) Reduce the complexity of the objects being tested for collisions. 
c) Reduce the number of objects. 

 
Obviously always try to achieve c) first.  The number of objects active in a given 
scene is the primary source of CPU load.  If objects can be removed this speeds 
up the simulation.  In the case of b), the difficulty in providing detailed collision 
results is directly associated with the complexity of the objects themselves.  
We’ll address this in the next section.  Firstly we’ll deal with how the Havok 
system attempts to achieve a), a reduction in the number of complex collisions. 

Multiphase Collision Testing 
The Havok system employs a series of collision tests, each getting progressively 
more complex, but after each test we eliminate as many objects from the test 
process before moving to the next level.  Assume we have a simple test A and a 
complex test B.  Test A is very fast to run but is not very accurate (but as long 
as it is conservative this is not a problem – a conservative test may return TRUE 
i.e. there is a collision, when in fact there isn’t but will never return FALSE i.e. 
there is no collision when in fact there is).  Test B is slow to run but highly 
accurate.  The process involves: 
 

��First test all objects with test A eliminating those that definitely do not 
collide, but not necessarily eliminating all non-colliding pairs. 

��Then test with test B which will take the reduced number of collision 
pairs and perform the complex collision test on these. 

 
 

 
Figure 11: first pass in a collision detection system – attempting to eliminate as many 

collision pairs as early as possible 

 
As an example consider the tests shown in Figure 11.  Here we see an example 
of the first pass of a collision system.  In this case we’re using bounding boxes 
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or boxes that enclose fully the objects contained within.  We test first to see if 
any of the boxes overlap (this is a much faster operation than doing full 
collision testing on arbitrary shapes), and if they do, that collision pair is 
passed to the next, more complex pass.  Out of the potential list of 6 collision 
pairs = { AB, AC, AD, BC, BD, CD } we find that only 2 pairs have overlapping 
boxes = { AB, CD } and therefore only these 2 collision pairs need further 
testing.  This is sometimes called trivial rejection. 
 
Note that although, for example, pair AB has not been trivially rejected, this 
does not mean that A and B are actually colliding – only that they might be 
colliding.  We do know, however, that A and C definitely do not collide because 
their bounding boxes do not overlap. 
 

 
Figure 12: multiphase collision testing 

 
The next phase will usually perform a more accurate rejection test or the final 
collision test (as shown in Figure 12) to determine information like the point of 
collision, the normal to the objects at the point of collision etc. which require 
substantially more work than simply testing for box overlaps. 
 
The good news is that you don’t have to worry about all this.  The Havok system 
automatically implements this multi-phase collision detection approach and 
creates bounding boxes for all objects in the simulation automatically.  The only 
control the user has over the complexity of the collision detection is in the 
shapes of the objects themselves.  The next section deals with the various types 
of object shapes you can use and their complexity for collision detection. 

Rigid Bodies & Collision Geometries 
The shapes of the objects being tested for collisions have a major impact on the 
speed of the collision test.  If we can make assumptions about the shape or 
even simplify the geometry for collision testing we can save a lot of CPU time. 
 
One of the first assumptions that physics engines make is in assuming that all 
the objects in the scene are perfectly rigid (i.e. can never change shape).  This 
results in a rigid body simulation.  If all bodies are rigid then we can take 
advantage of the fact that the geometry of the objects do not vary from step to 
step and we can memorize these shapes and previous collision results to speed 
up the next collision test we perform using those objects.  This naturally means 
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that objects made out of cloth, liquids or any deformable material cannot be 
simulated.  Handling these sorts of objects will be dealt with later. 
 
Insisting that all objects are perfectly rigid in a physical simulation is actually 
pretty bad news for the system (except for collision detection).  All objects no 
matter how hard, when colliding, deform even if infinitesimally at the point of 
contact and then return to their original shape when they bounce away from 
the collision.  When totally rigid objects collide, very large forces are generated 
in order to keep them apart.  This is an unfortunate side effect that needs to be 
addressed for realistic collisions. 
 

 
Figure 13: Some of the geometry formats supported by Havok. 

 
In the Havok physics engine objects are classified according to their shapes, 
and particular shapes have particular properties that make it easier to deal 
with them during collision detection. The following list classifies object shapes 
in order of increasing complexity (see Figure 13 for diagrams of some of these): 
 

��Implicit: we have a mathematical representation of the object and base 
the collision test on this.  Implicit objects supported by Havok include: 

o spheres 
o planes 
o polygons 

 
��Polygonal: we have a description of the object in terms of the polygons 

(usually triangles) making it up.  In this case we classify the objects, in 
order of increasing complexity, as: 

 
o Convex: imagine wrapping the object in a cellophane wrap – if the 

cellophane touches every part of the surface (i.e. there are no 
hollows in the surface that the cellophane does not reach) then it’s 
convex.  Alternatively, pick a point inside the object and any 
direction: follow this direction out of the object and if you only ever 
pass the through the object’s surface once, it’s convex.  Figure 15 
depicts some rigid body simulations using entirely convex objects. 
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Figure 14: rigid body simulations using only convex shapes 

 
o Concave: an object described by a closed surface (no holes or 

strange self-intersections like Klein bottles).  Concave objects are 
always assumed to represent volumes (i.e. the polygon mesh 
representing the surface has no holes or gaps in it). 

 

 
Figure 15: convex and concave representations of a rubber duck 

 
o Polygon Soup: a collection of polygons, not necessarily connected, 

all grouped and classified as a single object.  This is the most 
expensive format to detect collisions with, but is also the most 
general. 

 
In Figure 15, the duck is shown represented as a convex object (the skin 
defined in the image on the left) and the true concave geometry on the right.   

Proxy Objects 
The good news is that even though an object in a simulation may appear 
complex, it need not be simulated with this complexity.  For example, a car 
chassis displayed with detailed NURB panels and including wing mirrors and 
bumpers etc. might be simulated as a box.   
 
This is one of the main ways to reduce the CPU costs of a simulation.  These 
simplified objects representing the more complex display geometry are known 
as proxy objects or proxy geometries.  Artifacts resulting from the use of proxies 
may be visible and in general you should attempt to make the proxy object as 
close a fit to the real display geometry as possible.   
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Figure 16: collision proxies for a complex shape 

In Figure 16 we show a series of proxy objects for a complex geometry (the gray 
jagged thing which we’ll assume is represented as a polygon soup).  You can 
choose any proxy geometry you like for any shape of object but it makes sense 
to only use a simpler proxy geometry than the actual object itself.  In many 
cases you will actually create a specific geometry (like the last one in Figure 16) 
that is a combination of a sphere and a box.   
 
The final choice of proxy will represent a tradeoff between speed of collision and 
accuracy required and is typically very context specific.  In Figure 17 the effect 
of the choice is plainly visible; a sofa geometry (with a pretty high polygon 
count) is being represented by 2 different proxies, a sphere and a collection of 
boxes.  The collection of boxes is more expensive to compute collisions for but 
the sphere has a tendency to roll around, so is probably unsuitable in this case. 
 

 
Figure 17: on the left we show a complex sofa object and 2 choices of proxy, on the right 

we show the simulation in progress (with the proxy objects displayed – although this 
would normally not be the case).  The sphere is less suitable than the collection of boxes. 

Interpenetration 
Objects in a physical simulation are assumed to be solid and (except in the case 
of polygon soups) have a defined volume.  It makes no sense in the real world to 
think of one solid object either inside or penetrating another solid object (it’s not 
possible to embed a cup in a table).  Similarly in the simulation of the real 
world, a physics engine is intolerant of objects that are interpenetrating.  It also 
causes disbelief on the part of the viewer of the simulation – we don’t expect 
solid objects to pass through each other.  Therefore, a lot of the work performed 
by the physics engine is to attempt to prevent interpenetrations.  This can be 
pretty tough, particularly when there are large numbers of objects stacked up 
all pushing downwards under the force of gravity (it’s nearly as if they wanted 
to interpenetrate most of the time!) 
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When Havok encounters a pair of interpenetrating objects it simply ignores that 
collision pair and does not attempt to do anything clever – it will always try to 
prevent it happening in the first place of course.  Interpenetrations occur most 
frequently in the following cases: 
 

��When large forces are acting on objects forcing them to penetrate 
another object close by (often caused in large stacks). 

��If the time-step is too large objects can become embedded in other 
objects before the physics engine has a chance to do anything about it. 

��If the user sets the position of a physical object in such a way as to 
cause an interpenetration (see next sections for more details). 

��If the collision tolerance is too small.  See the next sections for more 
information on this. 

 
The time step used in a simulation has a large impact on the collision detection 
engine’s ability to accurately detect collisions.  If large time steps are being 
taken 2 things can go wrong: 
 

 
Figure 18: large time step issues in collision detection: on the left a collision is missed 

completely, on the right an interpenetration results. 

 
 

��Collisions are missed – the so-called “bullet through paper” effect (see 
Figure 18.)  Objects that are moving quickly will pass right through thin 
objects particularly if the time step is too large (i.e. a time t1 the bullet is 
in front of the piece of paper, but at the next time step, t2, the bullet has 
been placed on the other side of the piece of paper.) 

��Interpenetration: the time scale is so large that objects become embedded 
in each other from one time step to the next – too deeply for the physics 
engine to be able to recover gracefully. 

 
In general there is not much you can do except decrease the time step.  For 
interpenetrations this will often help, but for the “bullet through paper” effect 
this will usually not solve the problem.  Try to avoid very thin objects and 
extremely fast moving objects. 
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Inside & Outside 
One major consequence of the assumption of solidity and the problems of inter-
penetration is that you cannot consider most objects to be hollow.  A common 
mistake is to create a box for a room and begin to place objects within the box, 
thinking these are being placed inside the room.  A box, by default, is a solid 
geometry and any objects placed inside will be tagged as interpenetrating and 
will likely simply fall through the base of the box if simulated (i.e. collisions 
between the box and the objects will have been disabled by the physics engine).   
 
�  A way around this is to represent the box using a polygon soup geometry 
(unconnected triangles).  This will have the desired effect. 

Set Position & Deforming Geometry 
Physics engines like to control the scene completely.  By this we mean the 
physics engine is carefully storing the state of all objects in the scene and 
updating this state from frame to frame.  If some external system then makes 
some changes to the scene the physics engine needs to update its state 
accordingly.  This is often OK except when the changes made to the scene 
actually violate the simulation stability that the physics engine has been 
attempting to maintain.   
 
Two good examples of this are users setting object positions or orientations 
(sometimes called object warping) and deforming meshes.  Taking the first 
example it’s easy to see how arbitrarily setting the position of an object in the 
physics scene may cause problems: 
 

��If the object is moved to a position that causes an interpenetration; 
without additional information the physics engine will simply have to 
turn off collisions between the moved object and the object it has been 
moved into. 

��If other objects are resting or stacked above the object that is moved; 
hopefully the stack will simply restructure to fill the gap made by the 
moved object. 

��If other objects are attached to the moved object by springs or 
constraints: this is the worst case.  By moving the object abruptly, the 
connections to the other objects are stretched instantaneously and can 
cause the system to explode. 

 
Objects may be moved outside of the control of the physics system if they are 
being key framed in some way.  For such objects, the Havok system needs to be 
informed that these objects can be expected to move unexpectedly – Havok will 
track these objects specifically and will attempt to resolve the situation, though 
not always successfully.  In general try to avoid direct manipulation of objects.  
It is always better to apply forces and impulses either linear or angular to the 
objects to “push” them towards the desired goal.   
 
The case of deforming meshes is subtler, but is related to the difficultly in 
handling warping objects.  An example of this is shown in Figure 19. 
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Figure 19: deforming objects like the squished sphere above need to be treated with care 
in a physics engine.  The desired result is shown on the right i.e. the blocks are pushed 

out of the way when the sphere bulges out. 

In this example, a sphere has being key framed to squash (perhaps to simulate 
the effect of being squashed from above – note we are talking about key framing 
here and not a soft object under physics control).  Under normal circumstances 
this results in an interpenetration.  The sphere’s sides bulge out as it deforms 
into an ellipsoid shape, but this happens outside the control of the physics 
engine and therefore appears to happen instantaneously.  This sort of thing can 
happen quite frequently, particular in situations where meshes are being 
generated automatically (e.g. in character animation a skin mesh around a set 
of bones deforms based on the position of the bones). 
 
The correct result would involve the physics engine tracking the shape of the 
deforming mesh and when it spots a change in the mesh in a give time step it 
will use this with the shape of the mesh in the previous step (which it has 
remembered) to try and figure out how the surrounding affected objects should 
move.  In this case, the deforming mesh will cause the two blocks on either side 
to be pushed outwards away from the sphere.  The Havok system needs to be 
told that an object’s geometry may deform outside of its control in order to 
achieve this result.  

Collision Tolerance 
One final but crucial feature of the Havok system is its implementation of 
collision tolerances.  If you consider the previous sections on collisions and 
interpenetration you may have spotted that it’s pretty hard for the physics 
engine to detect a collision without an interpenetration having taken place.  
Because the physics system is based around discrete time steps (of say 1/60th 
of a second) it is rare that a collision at a given time step will take place where 2 
objects are just touching (i.e. a single point of contact). 
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Figure 20: object collision are usually only detectable after they have occurred = 

interpenetrations 

In Figure 20 this situation is illustrated.  2 spheres are traveling towards each 
other.  At time steps t1 and t2 they are still apart, but at time t3 they have inter-
penetrated.  To avoid this the Havok engine uses a system of collision 
tolerances.  These are minimum distance values that specify how close objects 
can be before they are deemed to have collided.  Consider the collision tolerance 
to be a “skin” of a certain thickness around the objects.  If the skins overlap (or 
inter-penetrate) the objects are said to have collided and the nearest points on 
the 2 objects are used as collision points. 
 

 
Figure 21: using collision tolerances, we can check to see if the tolerances overlap and if 

so consider the objects to have collided and take appropriate action. 

 
Figure 21 shows what happens when collision tolerances are used.  In this case 
the spheres have a small collision tolerance that really means that the spheres 
have a collision proxy that is another slightly larger sphere.  At time t2 each of 
the spheres have collided with the collision tolerance of the other sphere (note 
that it is not enough that only the tolerances have inter-penetrated – one of the 
spheres must be inside the collision tolerance of the other), the system 
calculates the collision information, assuming that the objects have collided 
(collision points are shown in Figure 21) and takes the appropriate action. 
 
As expected, with large values of the collision tolerance, you’ll begin to notice 
that the objects are not actually hitting.  This is particularly noticeable for 
objects that are stacked (you’ll see gaps between them).  In general the 
tolerance should be around 2% - 10% of the size of the object itself.  To remove 
most of these visual artifacts you should increase the size of the visual 
geometry by approximately half of the tolerance, or alternatively create a 
collision proxy that has been reduced in size by half the tolerance value. 
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Setting the scene 
The first stage in any physics simulation is to create the scene.  This is slightly 
different to constructing a 3D scene without physics and is constrained by 
collision tolerances and requirements of non interpenetration.  If you construct 
a scene in the normal way you will run into difficulties placing objects so that 
they are stably resting on other objects without collision problems.   
 

 
Figure 22: creating a stable stack 

 
As an example take the case of creating a stack of boxes of height h on the floor.  
Usually you will place the base of the first box at height 0, the second at height 
h, the third at height 2h and so on, as shown in Figure 22 A.  But given the 
collision tolerance issue mentioned in the previous section there will be 
problems with this approach.  Depending on the numerical accuracy of the 
simulation, the faces of neighboring boxes will either be classified as 
interpenetrating or colliding.  If interpenetrating, the boxes will fall through 
each other – if colliding they will immediately bounce off each other (albeit with 
very little energy, so you may get lucky).  Another approach might be to place 
the boxes such that the collision tolerances overlap, but the boxes are not 
actually touching as in Figure 22 B.  This can also cause problems, because the 
boxes are liable to settle for a while into a stable state (depending on external 
forces like gravity etc.) 
 
The best way around this is to use the physics engine itself.  As shown in 
Figure 22 C, you should create the boxes initially separated by a distance of 
more than the collision tolerance.  Now simply simulate the scene for a period of 
time; the boxes will fall the small distance and will settle into a stable stack.  
Eventually they will turn off as the energy management system kicks in.  Now 
you have a stable stack that is turned off and ready to be saved.  Store the 
positions of the boxes – now you can use these positions to create your stack at 
a later point in time (making sure to turn the boxes off manually to fully 
recreate the state of the stack.)  You are guaranteed that when the new 
simulation starts the stack will be stable and unmoving. 

Physical Units & Values 
We’ve already dealt with the issue of scale and switching between units of 
measurement.  Physics engines are not simply concerned with lengths and 
weights however – in fact there is a very large number of different measures in 
use at any given time.  In this section we’ll list some of these and give the units 
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used to quantify them.  Despite the apparent complexity of dealing with all 
these units, in many cases you will not need to worry: we find that 
experimentation with values is ultimately the best way to proceed when 
designing a scene.  It is often useful, however, to fall back on an analysis of the 
scene and units used to at least determine the ballpark values required to 
achieve a desired goal. 
 
For simplicity we’ll stick with the metric system in the following sections: 
 

��m = meters 
��kg = kilograms 
��s = seconds 
��N = Newtons (measurement of force: 1 N = force required to change the 

speed of a 1kg object by 1 m/s in 1 s). 
��rad = radians (1 rad = 180/π degrees where π = 3.14159…) 

 
Note: some implementations of the Havok physics technology use degrees as 
units of angle.  This will be clearly stated in the accompanying documentation. 
 
To read the units in the tables below apply the following conventions: 
 

��x/y = x per y e.g. m/s = meters per second (i.e. velocity or speed).  Note 
that x/y is sometimes written as x y-1. 

��x/y2 = x per y squared or x per y per y e.g. m/s2 = meters per second 
squared or meters per second per second (i.e. acceleration) 

Position Based 
Name Units Description 
Position m A better description of this term is displacement or 

distance. 
Velocity m/s Speed – how fast is an object traveling relative to some 

frame of reference. 
Momentum kg m/s Velocity times mass: this is the property of an object that 

determines the amount of force required to change the 
velocity of something.  For example a truck is harder to 
stop than a scooter even if both are traveling at the same 
speed. 

Acceleration m/s2 Rate of change of velocity over time i.e. is an object 
speeding up or slowing down?   

Impulse kg m/s or Ns A measure of a change in momentum (usually measured 
in Newton seconds).  If you want to instantaneously 
change the velocity of an object you must apply an 
impulse to the object. 

Force N or kg m/s2 The basic unit of a physics engine.  This is the quantity 
that measures the effort required to change the speed of 
an object (i.e. to give an object an acceleration – either 
positive or negative). 

Table 3 

Note: Sometimes, to distinguish from their angular counterparts (detailed in 
the next sections), velocity, momentum and acceleration are defined as linear 
velocity, linear momentum and linear acceleration. 
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Orientation Based 
Orientations are often one of the most difficult quantities to become familiar 
with.  They can be specified in any number of ways, some of the most popular 
being a transformation matrix or an axis and angle or using one of the many 
“standards” like pitch-yaw-roll, or azimuth-elevation-tile (shown in Figure 23: 
different ways to specify the orientation of an object in space).  The most 
important thing to understand is that orientations require a reference frame, 
just as distance requires a reference point (i.e. giving a location as 10 meters 
away is useless without information about what / where it is 10 meters away 
from). 
 

 
Figure 23: different ways to specify the orientation of an object in space 

Coordinate Systems & Reference Frames 
In order to talk about orientations we need first to mention coordinate systems 
and reference frames.  The orientation of any object in a scene is specified with 
respect to a coordinate system, often called the world coordinate system or 
world reference frame.  A 3D coordinate system has 3 independent directions or 
vectors usually termed x, y and z and an origin (position).  All positions and 
directions are specified with respect these directions and the origin.  When an 
object is created, we need to position it in the world and we do so by specifying 
its position and orientation; the object’s position and orientation are termed its 
local coordinate system or local reference frame (i.e. local to that object).  Figure 
24 shows a scene with a global coordinate system and 2 objects, each with its 
own local coordinate systems and positions. 
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Figure 24: local and global coordinate systems 

 
There is one final ambiguity to resolve (and one which can cause headaches 
when interfacing 3D engines with physics systems): what is the center of an 
object.  If we say “place the object at the origin” (i.e. at position [0, 0, 0]) where 
exactly is it placed?  This depends on which part of the object we line up with 
the origin: there are 2 options: 
 

��The origin or pivot as specified by the geometry or modeler 
��The center of mass (COM), which depends on the physical properties of 

the object (like the distribution of mass through the object i.e. is one end 
heavier than the other, like a hammer).  The COM is the point around 
which the object will naturally spin. 

 
The physics engine always uses the COM for specifying rotations and 
orientations, whereas usually the 3D engine will use the object’s geometric 
center or pivot as defined by the modeler.  In Figure 24 the boxes’ geometric 
center is also at the COM (i.e. right in the middle of the box).  The position of 
the box is taken to be the position of that center.  The local coordinate system 
for each box is shown and these are defined relative to the global coordinate 
system. 

Specifying Orientations 
In Havok we specify the orientation of an object using a rotation.  This rotation 
is defined by an axis, which is the axis or line we want to rotate around and an 
angle, which is the angle to rotate around this axis.  The rotation used is the 
rotation that would take the object from its starting orientation (usually lined 
up with the world reference frame) to its current orientation.  Note that rotation 
angles are given as anti-clockwise.  This is a standard in computer graphics 
derived from our use of the right-hand rule for orientation specification.  The 
right hand rule is simple to remember and is depicted in Figure 25. 
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Figure 25: the right hand rule for rotations: the thumb lines up with the axis to be rotated 
around and the direction the fingers curl indicates the direction a positive rotation angle 

will rotate in. 

Armed with this information (pun intentional!) we can describe the method of 
specifying orientations in general. 
 

 
Figure 26: specifying an orientation using an axis and angle 

In Figure 26 we show how a rotation takes effect given an axis and angle.  The 
top right image of the object shows it at creation time (i.e. its local coordinate 
system is lined up with the world’s).  In the image below the object is now lined 
up to the required orientation.   
 
Name Units Description 
Orientation Axis + angle An object’s orientation with respect to the world 

coordinate system. 
Angular 
velocity 

Axis + rad/s The speed at which the object is rotating: i.e. the number 
of radians per second the object rotates, usually specified 
with the axis it is rotating around 

Angular 
Momentum 

kg rad/s Angular equivalent of momentum. This quantifies how 
hard it is to increase or decrease the rotational velocity of 
an object. 

Angular 
Acceleration 

rad/s2 Angular equivalent of acceleration.  This is the rate of 
change over time of the angular velocity. 

Angular 
Impulse 

kg rad/s or  
N rad 

Angular equivalent of impulse.  This is a measure of a 
change in angular momentum.  Apply an angular impulse 
to an object if you want to instantaneously affect its 
angular velocity. 
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Torque kg m2/s2 Nm This is the angular equivalent of force but needs a 
separate discussion below.  Units are Newton meters. 

Table 4 

With Havok you can passively change the behavior of a body by applying forces, 
torques, impulses and angular impulses (or actively by setting properties like 
velocity or angular velocity).  When applying impulse and forces it is important 
to specify the point with respect to the object that the impulse / force is to be 
applied. 

 
Figure 27: applying forces at COM and at an arbitrary point with respect to an object’s 

coordinate system 

If a force / impulse is applied at the center of mass (COM) of an object that 
object’s acceleration / velocity will change but no additional rotational velocity 
or acceleration will be introduced.  On the other hand, when a force or impulse 
is applied at some other point away from the COM a torque is introduced which 
is proportional to the force / impulse applied and also the distance from the 
center of mass and will alter the angular velocity / acceleration of the object.  
Think of it like a lever were attached from the COM to the point where you’re 
applying the force / impulse – a longer lever makes it easier to move (or alter 
the angular velocity / acceleration of) a heavy object than a short lever.  
 

Physical Properties 
These properties depend on the material(s) making up the object and affect its 
behavior in a physical simulation. 
 
Name Units Description 
Friction Dimensionless The friction coefficient (usually a value from 0 to 1) which 

specifies how “sticky” or “rough” an object is.  See below 
for a more detailed explanation.  

Restitution Dimensionless The restitution coefficient (usually a value from 0 to 1) 
specifies what percentage of the kinetic energy is lost 
during a collision between 2 objects. With a value of 0 all 
energy is lost and the objects appear to come to a 
complete halt when they collide.  With 1, no energy is lost 
and the objects will bounce off each other with an equal 
but opposite velocity.  Somewhere in between and the 
objects lose energy with each collision. 

Mass kg A measure of an object’s resistance to change in motion, 
or the amount of matter in an object.  Not to be confused 
with weight which is the attraction of the Earth’s 
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gravitational pull on a certain mass.  To make matters 
confusing though, mass is defined officially by the weight 
of a mass of platinum-iridium stored in Sevres in France. 

Table 5 

Dynamic and Static Friction 
 
Friction is that quantity which attempts to prevent surfaces sliding off each 
other and is the key factor is allowing stable stacking (i.e. stacks or piles of 
objects that come to rest, held in place by the friction at the points of contact).  
During all collisions a certain amount of energy is lost due to friction (and 
mostly converted to heat).  Friction manifests itself in 2 forms, static and 
dynamic.  Static friction operates when objects are at rest; it attempts to 
prevent the objects from moving or sliding.  If a force is applied to the object 
large enough to overcome static friction, the object will begin to move / slide.  
At this point dynamic friction kicks in and, as long as the object is in contact 
with another object or surface, the dynamic friction attempts to slow the object 
down. 
 

 
Figure 28: static and dynamic friction in action.  The boulder is held in place by static 

friction until enough force is applied to break the contact (i.e. the plank has been raised to 
a sufficient height), after which the boulder begins to slide and dynamic friction kicks in 

which acts against the sliding action, generating heat.   

Figure 28 gives an example of static and dynamic friction in action.  In Havok 
you set a single friction coefficient value and the engine manages the transition 
between the friction modes for you. 

Next Steps 
We’ve briefly covered most of the main topics of physical simulation.  This is a 
very rich subject matter and there’s certainly a lot more to know but this 
should be sufficient to help you tackle the documentation that comes with the 
Havok technology.  We have specifically not attempted to cover all areas of the 
Havok physics technology but have focused instead on the general principles 
that underpin all simulation.  We’ll briefly describe now some of these other 
physics technologies available from the Havok engine. 
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Constrained Dynamics 
In many cases we want to construct physics systems that have constraints or 
attachments between sub parts of a larger assembly.  There are many types of 
constraints and some of those provided by Havok include: 
 

��Springs: forces are applied to objects connected by springs to attempt to 
keep the objects within a desired distance from each other (the rest 
length). 

��Dashpots or stiff springs: springs by default are pretty stretchy and in 
some situations you want to connect objects more tightly, but increasing 
the rigidity or stiffness of a spring also decreases its stability, and at 
some point the spring will break.  Dashpots allow much higher stiffness 
values. 

��Reduced coordinate systems: systems of rigid bodies are not simulated 
independently but are simulated as a large system all at the same time.  
Some reduced coordinate constraints include hinges, ball and socket 
joints, prismatic joints and universal joints. 

 
Constraints are a requirement for creating any dynamic system like a car 
chassis, or a locomotive engine.  Forces applied to one object are 
instantaneously applied to all objects connected to this one, so when the piston 
on a locomotive pushes forward, the wheels begin to spin.  See Figure 29 for 
some examples of constrained systems. 
 

 
Figure 29: constrained systems in action: the fan blade is connected to the base via a 

revolute joint and the water machine on the right uses a series of constraints to create the 
water powered block pushing mechanism. 

Non Rigid Body Dynamics 
So far we have been assuming that all objects are rigid (i.e. the geometry or 
shape does not change during the simulation).  In order to simulate soft, cloth 
or liquid objects we need to lift this restriction.  Most of what has been 
discussed earlier still applies except for the details of collision detection.  For 
deformable objects, collision detection becomes much more difficult – given that 
the object can change shape dramatically between time steps and also can 
attempt to collide with itself (this is particularly true of cloth, where 
interpenetration prevention is very expensive). 
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Some examples of deformable surfaces are shown in Figure 30. 
 

 
Figure 30: examples of deformable objects: (a) lots of cloth and rope elements used in a 
scene (courtesy of Blizzard Entertainment) (b) a piece of cloth slides over a mannequin’s 

head (c) blobby objects land on a hard surface (d) a water pool simulation with floating raft 
and rubber duck. 


